MILNE

Irrational Number System
is

美

THE IRRATIONAL NUMBER SYSTEM

By E. L. MILNE

Thesis for the Degree of MASTER OF SCIENCE in Mathematics and Astronomy

IN THE

UNIVERSITY OF ILLINOIS

Digitized by the Internet Archive in 2013

UNIVERSITY OF ILLINOIS

Hay 31,...1900

TIIS IS TO CELRTFY THAT THE TIESIS PREIPARED UNDER MY SUIDELVISION BY
Edewand \mathcal{Z} Milue

or Mastier if Vecince m
Machimaleer and M shomonng waw or menanmenex or. Machemeticis

e

A discussion of the system of rational numbers, including zero, shows that the four fundamental operations addition, subtraction, multiplication and division, always lead to numbers of the system and to no new numbers. Hence if the rational number system were subjected to no operations but these four, it would be a system that would be complete in itself.

But, 9 is easily shown, if a number of the system is subjected to the operation inverse to raising to a power i.e., the extraction of a root, the resulting number may not be a number of the system. For example; the equation $\quad x^{2}=2$
can not have a solution in the rational number system.
For suppose it did have the solution
$x=\frac{a}{b}$ where a and b are relatively prime. Break a and b up into their prime factors;

$$
x=\frac{a}{b}=\frac{p_{1} \cdot p_{2} \cdot p_{3} \cdots \cdots p_{n}}{q_{1} \cdot q_{2} \cdot q_{3} \cdots \cdots q_{m}}
$$

$\therefore p_{1}^{2} \cdot p_{2}^{2} \cdot p_{3}^{2} \cdot \cdots p_{n}^{2}=2 q_{1}^{2} \cdot q_{3}^{2} \cdot q_{3}^{2} \cdots q_{m}^{2}$
and if we call. this product M we have broken M up into its prime factors in two different ways, which is contrary to the fundamental theorem of number theory: "A number can be broken up into its prime factors in only

 , 5.1214ene

 $1=4: 8-7 \quad 18,11=1 \mathrm{Lisfg}$

 : -14 H

one way."
Again, if to the four elementary operations, the operation of limits is added, the resulting number may or may not be a number of the system. As an example; "If a systematic fraction is recurrent it has a rational limit; if it is not recurrent it does not have a rational limit."
("Allgemeine Arithmetik," by Dr. Otto Stolz, p.63, 66, 101)

A definition of the systematic fraction and the proof of this the rom will show that the rational number systterm is incomplete. If ℓ is any positive integer, C_{0} any integer $\grave{<} /, \quad C_{1}, C_{2}, C_{3} \cdots e{ }_{C}$ integers, the greatest of which is C_{m} where $0 \leqq C_{m} \leqq \ell-1$, and if

$$
A=C_{0}+\frac{C_{1}}{l}+\frac{C_{2}}{l^{2}}+\frac{C_{3}}{l^{3}}+\cdots+\frac{C_{n}}{l^{n}}+\cdots
$$

A is a systematic fraction. If the numerators after a certain term repeat in groups of \mathcal{K}, A is a recurrent systematic fraction.

Theorem;
If there exists a recurrent systematic fraction
a rational number A can be found such that

$$
S_{n}<A<S_{n}+\frac{1}{\ell^{n}}
$$

I.E., the systematic fraction has a rational limit.
-

Let $S_{n}=c_{0}+\frac{c_{1}}{\ell}+\frac{c_{2}}{\ell^{2}}+\frac{c_{3}}{e^{3}}+\cdots+\frac{c_{n}}{\ell^{n}}$ and let $S_{m}=c_{0}+\frac{c_{1}}{\ell}+\frac{c_{2}}{\ell^{2}}+\cdots+\frac{c_{m}}{l^{m}} \equiv \frac{Q}{l^{m}}$
be the part that does not repeat. Let h be the period.
Let $P=c_{m+1} l^{h-1}+c_{m+2} e^{h-2}+\cdots+e_{m+h}$
Form arbitrarily

$$
A=\frac{\left(Q e^{h}+P\right)-Q}{\left(e^{h}-1\right) e^{m}}
$$

Then is $h \neq 1$ and if $P \neq l-1$

$$
S_{n}<A<S_{n}+\frac{1}{e^{n}}
$$

If $h=1$ and $P=e-1$

$$
(m) \quad S_{n}<\frac{Q+1}{\ell^{m}} \leqq S_{n}+\frac{1}{e^{n}}
$$

using upper sign for $m<m$. If period begins with $C, m=0$,
$Q=c_{0} \therefore$ equation (m) becomes

$$
\begin{aligned}
& \frac{C_{0}+1}{e^{0}}=S_{n}+\frac{1}{e^{n}} \\
& S_{n+k} \geqq S_{\eta} \quad S_{n+k}+\frac{1}{e^{n+k}} \leqq S_{n}+\frac{1}{e^{n}} \\
& S_{m+r h}=S_{m}+\frac{P}{e^{m+h}}+\frac{P}{e^{m+2 h}}+\cdots \cdot \\
&=S_{m}+\frac{p}{e^{m+h}} \cdot \frac{1-\omega^{r}}{1-w} \quad\left(w=\frac{1}{e^{h}}\right) \\
&=\frac{Q}{e^{m}}+\frac{P}{e^{m+h}} \cdot \frac{1-\omega^{r}}{1-w}
\end{aligned}
$$

虽

$$
\begin{aligned}
S_{m+r h} & =\frac{Q e^{h}-w Q e^{h}+P\left(1-\omega^{h}\right)}{e^{m+h}(1-w)} \\
& =\frac{Q e^{h}-Q+P\left(1-\frac{1}{e^{r h}}\right)}{e^{m}\left(e^{h}-1\right)}
\end{aligned}
$$

We had

$$
\begin{aligned}
& A=\frac{\left(Q e^{h}+P\right)-Q}{e^{m}\left(e^{h}-1\right)} \\
\therefore & S_{m+n h}=A-\frac{P}{e^{m+r h}\left(e^{h}-1\right)}
\end{aligned}
$$

or $S_{m+i n}<A$ and no matter how great n is chosen, τ can be chosen such that $n<m+r h$

$$
\therefore S_{n} \leqq S_{n_{1+r h}}<A \quad \therefore S_{n}<A
$$

$\underset{(K)}{\text { Further }} S_{m+i h}+\frac{1}{e^{m+r h}}=A+\frac{1}{e^{m+r h}}\left(1-\frac{P}{e^{h}-1}\right)$ if $h \neq 1$ and $P \neq e-1$ then $P<e^{h}-1$ for

$$
\begin{aligned}
& p<(e-1)\left\{1+e+e^{2}+\cdots+e^{h-1}\right\}=e^{h}-1 . \\
& p<e^{h}-1
\end{aligned}
$$

If $\quad P<l^{h}-1$

$$
S_{m+r h}^{-1}+\frac{1}{e^{m+r h}}>A
$$

and .

$$
\begin{aligned}
& \therefore \text { if } \quad n \geqslant m+r h \\
& \quad S_{n}+\frac{1}{e^{n}}>A \\
& \therefore \quad S_{n}<A<S_{n}+\frac{1}{e^{n}} \quad \text { if } h \neq 1+P \neq l-1 \\
& h=1 \text { and } \quad P=l-1
\end{aligned}
$$

If $h=1$ and $P=\ell-1$
$A=\frac{Q+1}{l^{m}}=\frac{S_{m}+1}{l^{n}}$ and by (K)

$$
\begin{gathered}
\text { If } m \geqq 1 \quad S_{m+r}+\frac{1}{e^{m+r}}=A \\
\therefore A=S_{m+r}+\frac{1}{e^{m+r}}<S_{n}+\frac{1}{l^{n}} \quad \text { if } n<m+r
\end{gathered}
$$

$$
\text { cax Nave man } 4 \text { ! }
$$

2nill

35
424
$1=$
17
$7!$

$$
19: \quad \operatorname{mos}
$$

Net
?

Theorem;
If S_{n} has a rational limit it is a recurrent systematic fraction.

Hypothesis;
To every $\mathcal{E}>0$ belongs a $\mu>0$ such that

$$
\left|\alpha-S_{\eta}\right|<\varepsilon \quad \text { if } \quad n>\mu
$$

By definition of S_{n}

$$
\begin{aligned}
& 0 \leqq S_{n+r}-S_{n} \leqq \frac{1}{e^{n}}-\frac{1}{e^{n+r}}<\frac{1}{e^{n}} \\
& S_{n+r} \leqq S_{n} \text { and } S_{n+r}+\frac{1}{e^{n+r}}<S_{n}+\frac{1}{e^{n}}
\end{aligned}
$$

Fix η, call it m.
S_{m+n} can be made greater than S_{m} by makingngreat enough.

$$
\begin{aligned}
& \therefore S_{m+r}>S_{m} \\
& \therefore S_{m+r+s}-\alpha>S_{m+r}-\alpha>S_{m}-\alpha \\
& \therefore S_{m} \neq \alpha \\
&\left|S_{m+r+s}-\alpha\right|>\varepsilon \equiv S_{m+r}-\alpha
\end{aligned}
$$ 1.e. $\left|S_{n}-\alpha\right|>\varepsilon$ if $n>m+r+$

which is contrary to hypothesis. It is easily seen
intuitionally that $S_{n}<\alpha$; but to be rigid in the discussion it has to be proven.

In addition to the above inequalities,

$$
\begin{aligned}
& \alpha-S_{m+r+s}>\alpha-\left(S_{m+r+s}+\frac{1}{e^{m+r}+s}\right)> \\
& \alpha-\left(S_{m+r}+\frac{1}{e^{m+r}}\right)>\alpha-\left(S_{m}+\frac{1}{e^{m}}\right)
\end{aligned}
$$

from which $S_{m}+\frac{1}{l^{m}}>\alpha$

faLbaitoc (7) .t

2

Sird

I2 HL
\qquad

$\therefore S_{m}<\alpha<S_{m}+\frac{1}{e^{m}}$

 But if this relation exists S_{m} is recurrent. (Stolz P.\#64)We can also show the incompleteness of the rational number system by forming a number that does not belong to the system. For example; suppose the rational numbers have been arranged in some definite order and numbered (Crelle's "Journal fur die rein ind angewandte Mathematic." Vol.77, 1874. P. 258 G. Cantor's Ueber eine Eigenschaft dis Inbegriffes aller reelen algebraischen Zahlen.")

Cantor defines a "Wertmenge" or "Punktmenge" as "abzahlbar (enumerable) if we can assign them in a one to one correspondence to the positive integers. We will now show that the positive rational numbers can be counted. The positive rational numbers consist of the positive integers and the fractions of the form $\frac{a}{b} \quad$, where a and b are relatively prime. Now if we let $|N|=a+b$, give to N all possible positive integral values, choose the arrangements of the integers a and b as below, and form the corresponding rational numbers $\frac{a}{b}$, we will have these rational numbers in a definite order.
?

N	a	b	$\frac{a}{b}$
1	0,1	1,0	0
2	0,1,2	2,1,0	0,1
3	0,1,2,3	3,2,1,0	$0,1 / 2,2$
4	0,1,2,3,4	4, 3, 2, 1, 0	$0,113,1,3$
5	$0,1,2,3,4,5$	5, 4, 3, 2, 1, 0	$0,1 / 4, \frac{2}{3}, 3 / 2,4$
6	$\begin{aligned} & 0,1,2,3,4,5,6 \\ & \text { etc. } \end{aligned}$	$\begin{aligned} & 6,5,4,3,2,1,0 \\ & \text { etc } \end{aligned}$	$0,1 / 5,1 / 2,1,2,5$
\vdots	ete	etc.	etc

We see that by taking N large enough we can include any'rational number. Now taking the rational numbers in the order which they appear in the last columns of this table, and omitting any which appear and which have already been counted;

The lst is $0 \quad 0.000,000,000, \ldots . .$.
The 2nd is $1 \quad 1.000,000,000, \ldots . .$.
The 3rd is $\frac{1}{2} \quad 0.500,000,000, \ldots . .$.
The 4 th is 2 2.000, 000, 000,
The 5 th is $1 / 3 \quad 0.333,333,333 \ldots$
The 6th is $3.000,000,000, \ldots . .$.
The 7th is $\frac{1}{4} \quad 0.250,000,000, \ldots . .$.
The 8 th is $2 / 3 \quad 0.666,666,666 \ldots$
The 9 th is $3 / 2 \quad 1,500,000,000, \ldots . .$. etc.etc.

Now if we form a number by alvays adding unity to the nth decimal place of the nth rational number, i.e.

$$
.111,141,171, \ldots \ldots \ldots
$$

$$
\begin{aligned}
& \text { fíltum nant } \\
& =-\cdots, 0,0.00 .02+1+1+1+2
\end{aligned}
$$

$$
\begin{aligned}
& .814 .14
\end{aligned}
$$

$$
\ldots-\cdots,-11,112
$$

We have a number which evidently does not belong to the rational system.
Definition of $Q n$
If a series of rational terms exists according to some law the result of taking the first
n of these terms according to that law is represented by φ_{η}.
Definition of Rational Limit of φ_{n}
Given a system of rational numbers $\varphi_{1}, Q_{2} ;$ it such that \bigcup_{n} depends upon the rational integer η for its value; and given that α is a rational number. $\varepsilon>0$ Then if to each positive rational number^ belongs a positive rational number $\mu>0$ such that
(a) $\left|\alpha-\varphi_{n}\right|<\varepsilon$ whenever $n>\mu \quad i, \varepsilon$. $\left|\alpha-\varphi_{n}\right|<\varepsilon$ if $n>\mu, \alpha$ is called the limit of Un as n increases indefinitely. or as is: usually abbreviated;

$$
\alpha=\lim _{n=\infty} \varphi_{n}
$$

Now given a series of rational numbers $\varphi_{0}, \varphi_{1}, \varphi_{2}, \ldots$
On depending upon the integer m for its value, it is required to determine whether the $\psi^{\prime} S$ have a rational limit or not. A necessary condition is at once derived from (a). (a) may be written
-18

$$
\begin{aligned}
& \left|\alpha-\varphi_{n+r}\right|<\varepsilon \quad \text { if } n>\mu \quad(r=1,2,3, \cdots) \\
& \therefore\left|\varphi_{n+r}-\varphi_{n}\right|<2 \varepsilon \quad \text { if } n>\mu \quad(r=1,2,3, \cdots)
\end{aligned}
$$

or since \mathcal{E} is arbitrary call $2 \varepsilon, \varepsilon$ and get (G) $\left|\varphi_{n+\pi}-\varphi_{n}\right|<\varepsilon$ if $n>\mu \quad(r=1,2,3, \cdots)$ as a necessary condition that the ℓ_{s}^{\prime} have a rational limit. But (b) is not a sufficient condition as is seen from the fact that it is satisfied by both the recurrent and the non recurrent systematic fractions, and the latter do not have a rational limeit.

Theorem:
If we have a set of $\ell^{\prime} s$ such that having chosen an arbitrary rational number $\mathcal{E}>0$ we can determine a positive integer μ such that

$$
\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon \text { if } \quad n>\mu
$$

one of three things will happen;

1. There will exist a

$$
\rho^{\prime}>0 \text { and } \quad V>0
$$

such that $\varphi_{\eta}>\rho^{\prime}$ if $n>v$ or
(anchan
2. There will exist a

$$
-\rho<0 \text { and } \quad V>0
$$

such that $\varphi_{n}<-\rho$ if $n>V$
or we can choose
3. $\varepsilon>0$ and find $V>0$ such that

$$
-\varepsilon<\varphi_{n}<\varepsilon \quad \text { if } \quad n>V
$$

Or for 3 . we can say φ_{η} approaches the limit 0 .
In other words, under the given conditions, after enough φ^{\prime} 's have been taken the remaining ℓ_{s}^{\prime} are
(I) all positive and greater than a certain fixed quantity, or
(2) all negative and less than a certain fixed quantits, or
(3) they approach the limit zero.

Proof. $\left|\varphi_{n+r}-\varphi_{n}\right|=\left\{\begin{array}{l}\varphi_{n+r}-\varphi_{n} \\ \varphi_{n}-\varphi_{n+r}\end{array}\right\}<\varepsilon \varepsilon_{r-1,2,3, \cdots}$
(I) $\therefore \varphi_{n}-\varepsilon<\varphi_{n+r}<\varphi_{n}+\varepsilon \quad n>\mu$

$$
r=1,2,3, \ldots
$$

Give \mathcal{E} any positive value. Fix its value. Then either $\varphi_{n} \leqq \varepsilon \quad$ for all values of $n>\mu$ or there exists a particular $n>\mu$ for which $\varphi_{n}>\varepsilon$
鈤

If the latter is the case designate that particular value of η by η so $\varphi_{m}>\varepsilon \quad$ Then $\varphi_{m}-\varepsilon=\rho^{\prime}$
some positive number. But by (I)

$$
\varphi_{n}-\varepsilon<\varphi_{n+r} \text { if } n>\mu
$$

hence $\rho^{\prime}<\varphi_{m+r}$
if $m>\mu$

$$
r=1,2,3, \cdots
$$

and we have case 1.
But suppose there is no m for wish $\varphi_{m}>\varepsilon$;then we will always have $\varphi_{\eta} \leqq \varepsilon$ for all values of $\eta>\mu$ On this supposition let $\varepsilon^{\prime}=\frac{\varepsilon}{2}$
Then by (I)
($\left.I^{\prime}\right) \varphi_{n}-\varepsilon^{\prime}<\varphi_{n+r}<\varphi_{n}+\varepsilon^{\prime}$ if $\quad n>\mu^{\prime}>0$

$$
r=1,2,3, \cdots
$$

Again; either $\varphi_{n} \leqq \varepsilon^{\prime}$ for all values of $\eta>\mu^{\prime}$ or there exists a particular $\eta>\mu^{\prime}>0$ for which $\varphi_{n}>\varepsilon^{\prime}$ If this latter is the case, designate that particular value of η by m^{\prime} so $\varphi_{m^{\prime}}>\varepsilon^{\prime}$ Then $\varphi_{m^{\prime}}-\varepsilon^{\prime}=\rho^{\prime}$ some positive number. But by (I^{\prime})

$$
\varphi_{n}-\varepsilon^{\prime}<\varphi_{n+r} \quad \text { if } \quad n>\mu^{\prime}>0 \quad r=1,2,3, \cdots
$$ hence $\rho^{\prime}<\varphi_{m^{\prime}+r}$ if $m^{\prime}>\mu^{\prime}>0$

$$
r=1,2,3, \cdots
$$

and again we have case I. But if an M^{\prime} can not be found such that $\varphi_{m^{\prime}}>\varepsilon^{\prime}$ we will always have $\varphi_{n} \leqq \varepsilon^{\prime}$ for all values of $n>\mu^{\prime}$

Jetting in turn $\varepsilon^{\prime \prime}=\frac{\varepsilon}{2^{2}}, \quad \varepsilon^{\prime \prime \prime}=\frac{\varepsilon}{2^{3}} \quad$ etc. and repeating the preceding reasoning, (notice that the ε 's are always decreasing in value and approach zero as a limit) we get finally either

$$
\varphi_{n}>\varphi_{m^{r}}-\varepsilon^{v} \equiv \rho^{\prime} \text { if } n \geqq m^{v}>\mu
$$

or we will always have

$$
\begin{equation*}
Q_{n} \leqq \varepsilon^{v} \text { if } n \geqq m^{\checkmark}>\mu \tag{a}
\end{equation*}
$$

Now starting with the right side of inequality (I) and using a similar line of reasoning we get finally either

$$
\varphi_{n}+\varepsilon^{v}<0 \text { if } n \geqq m^{\checkmark}>\mu
$$

and $\therefore \varphi_{n}<-\varepsilon^{\vee} \equiv \rho^{\prime}$ satisfying case 2 ,
(b) i. e.
$\varphi_{n} \geqq-\varepsilon^{v}$
$m \geqq m^{v}>\mu$

But if neither case 1 or case 2 is satisfied (a) and (b) must be satisfied at the same time
(c) $\therefore-\varepsilon^{V} \leqq \varphi_{n} \leqq e^{V}$ for $n \geqq m^{V}>\mu$ and \bigcup_{n} approaches the limit zero.

Regular sequence.
ψ_{η} is called a regular sequence if having chosen (1) $\varepsilon>0$ we can find (2) $\mu>0$ such that

$$
\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon \quad r=1,2,3, \cdots
$$ whenever $m>\mu$

 ※u.
\square

$$
\mu
$$

Hesichin form noll

2

 rests

$$
\pm 1
$$

40

> Xiswitar the wet

$$
\cdots-x|n|
$$

$$
\cdot-7 \times 8 \text { nul }-4 \text { annonive hat }
$$

$$
\begin{align*}
& \text { Sl selt ont } \\
& \text { 121) 278 } \\
& \text { : } \quad . \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& \text { Nd: } \\
& -\pi \\
& \text { (a) }
\end{aligned}
$$

As an immediate consequence of the preceding theorem we have the following corollaries. (Proof in Stolz) Corollary 1. If a system of φ^{\prime} 'S satisfy (I) Theorem I then $\gamma \pm \varphi_{n}$ and $\gamma \varphi_{n}$ satisfy (I) where χ is any arbitrary rational number. cor. 11. On satisfies (I) except when $^{\lim } \varphi_{n}=0, n=\infty$ and then $\lim _{n \rightarrow \infty} \frac{1}{Q_{n}}=\infty$
cor. 111. If φ_{n} and ψ_{n} both satisfy (I) $\varphi_{n} \pm \psi_{n}$ and $\psi_{n} \varphi_{n}$ will both satisfy (I); also $\frac{\varphi_{n}}{\psi_{n}}$ satisfies (I) if $\operatorname{limit}_{n=\infty} \psi_{n} \neq 0$
Cor. IV. If $\varphi_{n}, \psi_{n} \cdots \omega_{n}$ all satisfy (I) then

$$
\alpha \varphi_{n \pm}+\beta \psi_{n} \pm k \psi_{n} \ldots . .+\delta \theta_{n} \text { and }
$$

$$
K \cdot \varphi_{n} \cdot \psi_{n} \cdot \chi_{n} \cdot \cdots \cdot \omega_{n} \quad \text { satisfy }(I)
$$

where K is an arbitrary rational number $\neq 0$, and α, β, t_{c} are arbitrary rational numbers not all equal to zero at the same time.

Theorem:
If the φ^{\prime} 's have a rational limit \propto, and if X is any rational quantity $\neq 0$, then $V \cdot \varphi_{n}$ and $V \pm \varphi_{n}$ have the rational limits $K \cdot \alpha$ and $\gamma \pm \infty$ respectively;
and if $\alpha \neq 0, \frac{1}{\varphi_{m}}$ has the rational limit $\frac{1}{\alpha}$
Also if ψ_{n} has the rational limit $\beta, \quad \psi_{n} \pm \varphi_{n}$ and $\psi_{n} \cdot \varphi_{n}$ have the rational limits $\beta \pm \alpha$ and $\beta \cdot \alpha$ and if $\lim _{n=\infty} \psi_{n}=0 \quad \varphi_{n}: \psi_{n}$

```
mouly il⿴囗十|
```



```
    &. 1:42%)
4m
```



```
                    tongmuknel gunthry monil
                    n=HJsse! Li! s-11s|i=
                            .1* .N=
                                    2-318:
```



```
                                    -1.1 a whatlos
    * T1NFA1HOM
                                    41.71 .24
                Bcal
        |r| Namin!
```



```
                                    :~Nom
```



```
    |
    *-1
```



```
                        nimortmi|ima =rt *Ned bil
```



```
                                1) 4a
```


has the rational limit, $\alpha: \beta$

Corollary.
If a finite number of expressions φ_{n}, ψ_{n}, etc each have a rational limit, the limit of the sum of these expressions is equal to the sum of their limits, and the limit of the product of the se expressions is equal to the product of their limits.

Definition of the Irrational Number.
We will define the irrational number algebraically by saving that (I) Theorem 1 must be satisfied without the $\varphi^{\prime} S$ having a rational limit.

If the rational numbers φ_{n} satisfy (l) without having a rational limit we are led to a new object of thought - - a number different from each of these $\varphi^{\prime} S$. It is not expressible in terms of the φ 's and nothing is stated about it further than that it satisfies (I) and is different from the rational (${ }^{\prime}$'s. Will represent this new object of thought by

$$
\left(\varphi_{n}\right)
$$

and call it an Irrational number.


```
                                    OH2xif(30
```



```
            <acosen
```

 <acosen
 L,

```
L,
```



```
    &)
```

```
    &)
```


Definition of Equality of Irrational
Numbers.

$$
\left(\varphi_{n}\right)=\left(\psi_{n}\right) \text { if } \quad \lim _{n=\infty}\left(\varphi_{n}-\psi_{n}\right)=0
$$

or if having chosen a rational number $\varepsilon>0$ we can find a rational integer $\mu>0$ such that $\left|\varphi_{n}-\psi_{n}\right|<\varepsilon$ if $n>\mu$ In order to put the subject on a rigid mathematical basis we will prove the following fundamental theorems regarding the equality of irrational numbers; - which correspond to theorems for rational numbers ordinarily assumed in algebra and geometry to be axiomatic. Theorem 1.

$$
\text { If } \quad\left(\varphi_{n}\right)=\left(\psi_{n}\right),\left(\psi_{n}\right)=\left(\varphi_{n}\right)
$$

Theorem 11.
If $\left(\varphi_{n}\right)=\left(\psi_{n}\right) \quad$ and $\left(\psi_{n}\right)=\left(\theta_{n}\right)$

$$
\left(\varphi_{n}\right)=\left(\theta_{n}\right)
$$

Theorem 111.

$$
\text { If } \begin{aligned}
-\varepsilon & <\psi_{n}<\varepsilon \\
\left(\varphi_{n}\right)+\left(\psi_{n}\right) & =\left(\varphi_{n}\right)
\end{aligned}
$$

Theorem IV.
If the Q^{\prime} ' have a rational limit $\alpha,\left(Q_{n}\right)=\alpha$
Theorem V.
If $\left(Q_{n}\right)$ is an irrational number and if out of the sequence of $Q^{\prime} S$ we take a sequence $\mathbb{O}_{K_{1}}, Q_{K_{2}}$ etc,

$$
\left(Q_{K_{n}}\right)=\left(Q_{n}\right)
$$

Proof The I.
Hypothesis is

$$
\begin{aligned}
& \left|\varphi_{n}-\psi_{n}\right|<\varepsilon \text { if } \quad n>\mu \\
& \therefore\left|\psi_{n}-\varphi_{n}\right|<\varepsilon \text { if } n>\mu
\end{aligned}
$$

and $\left(\psi_{n}\right)=\left(\varphi_{n}\right)$ by the definition of equality of irrational numbers.
Theorem II.
If $\quad\left(\varphi_{n}\right)=\left(\psi_{n}\right)$ and $\left(\psi_{n}\right)=\left(\theta_{n}\right)$

$$
\left(\varphi_{n}\right)=\left(\theta_{n}\right)
$$

Hypothesis

$$
\begin{array}{r}
\quad\left|\varphi_{n}-\psi_{n}\right|<\varepsilon \quad \text { if } n>\mu \\
\quad\left|\psi_{n}-\theta_{n}\right|<\varepsilon \quad \text { if } n>\mu \\
\therefore\left|\varphi_{n}-\psi_{n}+\psi_{n}-\theta_{n}\right|<2 \varepsilon \text { if } n>\bar{\mu} \\
\bar{\mu} \quad \text { being either } \mu \text { or } \mu^{\prime}, \text { whichever is the }
\end{array}
$$ greater.

Now calling $2 \varepsilon, K$

$$
\begin{aligned}
& \left|\varphi_{n}-\theta_{\eta}\right|<K_{i p} \quad n>\bar{\mu} \\
& \therefore\left(\varphi_{n}\right)=\left(\theta_{n}\right) \text { by definition. }
\end{aligned}
$$

Theorem III

$$
\begin{gathered}
\text { If }-\varepsilon<\psi_{n}<\varepsilon \quad \text { if } n>\mu \\
\left(\varphi_{n}\right)+\left(\psi_{n}\right)=\left(\varphi_{n}\right) \\
\left|\varphi_{n}+\psi_{n}-\varphi_{n}\right|=\left|\psi_{n}\right|<\varepsilon \text { if } n>\mu \\
\therefore\left(\varphi_{n}\right)+\left(\psi_{n}\right)=\left(\varphi_{n}\right) \quad \text { by definition. }
\end{gathered}
$$

$$
\begin{aligned}
& .2=57_{1006} \\
& \text { 3. Aiventron } \\
& 41 \\
& \text { * }
\end{aligned}
$$

$$
\begin{aligned}
& .1204-9104
\end{aligned}
$$

$$
\begin{align*}
& \text {. } 7 \text {-hav } \\
& \text { quitere un- } \\
& 18 \\
& \text { N152M94 } \\
& \text { Lit non= } \\
& \text { N* } \\
& -1-1-1+x \tag{71}
\end{align*}
$$

Theorem IV.
If the Q^{\prime} 's have a rational limit $\alpha,\left(\varphi_{n}\right)=\alpha$ We evidently can not use our definition for equality of irrational numbers as there are none involved. However, by the definition of a rational limit for the $Q^{\prime} S$ $\left|\varphi_{n}-\alpha\right|<\varepsilon$ if $n>\mu$
or $\operatorname{limit}_{n=\infty} Q_{n}=\alpha$
Stolz, if the Q 's have a rational limit to avoid complicating the notation, letsthis limit also be represented by $\left(Q_{n}\right)$

Theorem V .
If $\left(\varphi_{n}\right)$ is an irrational number, and if out of the sequence of $Q^{\prime} S$ we take a sequence $Q_{K_{1}}, \varphi_{K_{2}}$, etc these $Q_{K_{n}}$'s will form a sequence satisfying the same conditions as the $\varphi^{\prime} s$ did and $\left(\varphi_{n}\right)=\left(\varphi_{K_{n}}\right)$
$Q_{K n}$ is a rational number, and we are to show that having chosen a positive rational number \mathcal{E} at pleasure, we can find a positive rational integer μ^{\prime} such that

$$
\left|\varphi_{K_{n^{\prime}+n}}-\varphi_{K_{n^{\prime}}}\right|<\varepsilon \quad n=1,2,3, \cdots \cdots
$$

for all values of $n^{\prime}>\mu^{\prime}$
since $\left(\varphi_{n}\right)$ is irrational $\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon$ for all values of $n>\mu$
$18+\boldsymbol{1}+10$

 © 1

 wr colata *
. 7 now

$$
-x+0-1+3 E 1-i+\ln \ln -1 t
$$

$$
L \operatorname{lom}+11
$$

$$
n i
$$

Now choose η^{\prime} so $\left.\varphi_{K_{n^{\prime}}}>\varphi_{n}\right\rangle \varphi_{\mu}$ as evidently can always be done. Call this value of $\eta^{\prime}, \mu^{\prime}$ Then $\left|\varphi_{K \mu^{\prime}+r}-\varphi_{K_{\mu^{\prime}}}\right|<\varepsilon$ and $\left|\varphi_{K_{n^{\prime}+r}}-\varphi_{K_{n^{\prime}}}\right|<\varepsilon$ for all values of $\eta^{\prime}>\mu^{\prime}$

$$
n=1,2,3, \cdots \quad \text { Q. E. D. }
$$

Positive and Negative Irrational Numbers. We define $\left(\varphi_{n}\right)>\alpha(\alpha$ a rational number $)$ if there exists a positive rational number ρ such that $\varphi_{\eta}-\alpha>P$ if η is greater than some rational integer $\mu>0$. $\therefore\left(\varphi_{n}\right)>0$ if there exists a positive rational number ρ such that $\varphi_{n}>\rho_{\text {if }} n>\mu$
Such an irrational number is called a positive irrational number.
We define $\left(\varphi_{n}\right)<\alpha$ if there is a negative rational number - p such that $\varphi_{\eta}-\alpha<-\rho$ for all values of $\eta>\mu, \mu$ a positive integer.
$\therefore\left(\varphi_{n}\right)<0$ if there exists a negative rational number $-\rho$ such that $\varphi_{n}\langle-\rho$ if $n>\mu>0$; such an irrational number is called a Negative Irrational Number. $\left(\varphi_{n}\right)>\left(\psi_{n}\right)$ if there exists a positive rational number ρ such that $\varphi_{n}-\psi_{n}>\rho$ for all values of $n>\mu$ $\left(\varphi_{n}\right)<\left(\psi_{n}\right)$ if there exists a negative rational - ρ

* Lran/no ar

$1 \mathrm{~L} x=4 \mathrm{n}-15 \mathrm{~m}$

number such that $Q_{n}-\psi_{n}<-\rho$ for all values of $n>\mu$. We will call the absolute value of $\left(\varphi_{n}\right) \quad\left|\left(\varphi_{n}\right)\right| \therefore\left|\left(\varphi_{n}\right)\right|$ - $\left.\varphi_{n}\right) ~ M\left(-\varphi_{n}\right) \quad$ We will now prove the six fundamental theorems concerning the inequality of the irrational numbers.

Theorem I.

$$
\text { If }\left(\varphi_{n}\right)>\left(\psi_{n}\right) \quad\left(\psi_{n}\right)<\left(\varphi_{n}\right)
$$

Proof; If $\quad\left(\varphi_{n}\right)>\left(\psi_{n}\right)$.

$$
\varphi_{n}-\psi_{n}>p \text { if } n>\mu
$$

Then

$$
\psi_{n}-\varphi_{n}<-\rho \text { if } n>\mu
$$

and $\quad \therefore\left(\psi_{n}\right)<\left(\varphi_{n}\right)$
can prove similarly if $\left(\varphi_{n}\right) \leqslant \alpha$

$$
\alpha \geqslant\left(\varphi_{n}\right)
$$

Theorem II.
Of two unequal irrational numbers, one is greater and the other less.
Let $\left(\varphi_{n}\right)$ and $\left(\psi_{n}\right)$ be the unequal irrational numbers. If $\left|\varphi_{n}-\psi_{n}\right|<\varepsilon$ for all values of $n>\mu,\left(\varphi_{n}\right)=\left(\psi_{n}\right)$ by the definition of equality of irrational numbers. But by hypothesis $\left(\varphi_{n}\right) \neq\left(\psi_{n}\right)$

$$
\begin{aligned}
& \therefore\left|\varphi_{n}-\psi_{n}\right| \& \quad \text { whenever } n>\mu \\
& \therefore\left|\varphi_{n}-\psi_{n}\right| \geqq \varepsilon \quad \text { if } n>\mu
\end{aligned}
$$

Now choose $\rho<\varepsilon$. Then either $\varphi_{\eta}-\psi_{\eta}>\rho$ for all
(as)
values of $n>\mu o r \psi_{n}-\psi_{n}>$ for all values of $n>\mu$ and the theorem is proved by the definition of inequality of irrational numbers.

Theorem III.

$$
\begin{gathered}
\text { If }\left(\varphi_{n}\right)>\left(\psi_{n}\right) \text { and }\left(\psi_{n}\right)=\left(\theta_{n}\right) \\
\left(\varphi_{n}\right)>\left(\theta_{n}\right)
\end{gathered}
$$

Proof

$$
\begin{array}{cl}
\varphi_{n}-\psi_{n}>p & \text { if } n>\mu \\
\left|\psi_{n}-\theta_{n}\right|<\varepsilon & \text { if } \quad n>\mu^{\prime}
\end{array}
$$

Suppose

$$
\begin{array}{rl}
& \left|\psi_{n}-\theta_{n}\right|=\varepsilon^{\prime}<\varepsilon \\
\text { if } n & n>\mu^{\prime} \\
\therefore & \psi_{n}=\theta_{n} \pm \varepsilon^{\prime} \quad \text { if } \quad n>\mu^{\prime}
\end{array}
$$

As ε is arbitrary we can make ε and $\therefore \varepsilon^{\prime}<p$
(a) Now

$$
\begin{array}{ll}
\psi_{n}=\theta_{n} \pm \varepsilon^{\prime} & \text { if } n>\mu^{\prime} \tag{b}\\
\varphi_{n}-\psi_{n}>\rho & \text { if } n>\mu
\end{array}
$$

(a) \& (b) both hold if $n>\bar{\mu}, \bar{\mu}$ being whichever is the greater $\mu \sigma \mu^{\prime}$, or substituting in (b) for ψ_{n} its value from (a)

$$
\varphi_{n}-\theta_{n}>p \pm \varepsilon^{\prime} \text { if } n>\bar{\mu}
$$

and $\left(\varphi_{n}\right)>\left(\theta_{n}\right)$ by definition.
Theorem IV.

$$
\begin{gathered}
\text { If }\left(\varphi_{n}\right)>\left(\psi_{n}\right) \text { and }\left(\psi_{n}\right)>\left(\theta_{n}\right)^{\prime} \\
\left(\varphi_{n}\right)>\left(\theta_{n}\right)
\end{gathered}
$$

This theorem and theorem V can be proved in a manner exactly similar to that used in theorem III.

41	
41	
41	$40-711$
41	

-1~
9L Nivel ntat ZI IEI

$$
\begin{aligned}
& \text { hal Eht pactit nit }
\end{aligned}
$$

$$
\begin{aligned}
& 72 \\
& \rightarrow+1+14 a+n
\end{aligned}
$$

$$
.12+\operatorname{lng} 5
$$

8π
E1

- 1 14

- 4

Theorem V.

$$
\text { If }\left(\varphi_{n}\right)>\left(\varphi_{n}^{\prime}\right)
$$

and $\left(\psi_{n}\right)>\left(\psi_{n}^{\prime}\right)$
$\left(\varphi_{n}\right)+\left(\psi_{n}\right) \nleftarrow\left(\varphi_{n}^{\prime}\right)+\left(\psi_{n}\right)$ or $\left(\varphi_{n}\right)+\left(\psi_{n}^{\prime}\right)$
Theorem VI.
Between any two unequal irrational numbers there must exist an irrational number different from either of them.
Suppose $\left(\varphi_{n}\right)>\left(\psi_{n}\right)$
Then $\varphi_{n}-\psi_{n}>p$ if $n>\mu$
or

$$
\varphi_{n}>\psi_{n}+p
$$

if $n>\mu$
and $\left(\varphi_{n}\right)>\left(\psi_{n}\right)+\beta>\left(\psi_{n}\right)$
In a similar manner we can show, that between 0 and any irrational number there exists an irrational number. ie. there is no smallest irrational number Similarly there is no largest irrational number. Corollary;

There is no smallest or largest rational
number

. 7 HnE~

$$
.-\infty \quad d \mathrm{a}+11 \mathrm{l}
$$

 ; ctafłinns

Addition of Irrational Numbers - . . . -
We will define $\left(\varphi_{n}\right)+\alpha$ or $\propto+\left(\varphi_{n}\right)$ where $\left(\varphi_{n}\right)$ is irrational and α rational, as the irrational number $\left(\varphi_{n}+\infty\right)$.

We will define $\left(\varphi_{n}\right)+\left(\varphi_{n}\right)$ or $\left(\varphi_{n}\right)+\left(\varphi_{n}\right)$, where both $\left(\varphi_{n}\right)$ and $\left(\psi_{n}\right)$ are irrational, as the irrational number $\left(\varphi_{n}+\psi_{n}\right)$. From this definition and the laws for the addition of rational numbers we get when α \& β are real numbers, rational or irrational,

1. $\alpha+\beta=\beta+\alpha$
2. $(\alpha+\beta)+\delta=\alpha+(\beta+\delta)$
3. If $\alpha=\alpha^{\prime} \quad \alpha+\beta=\alpha^{\prime}+\beta$
4. If $\alpha>\alpha^{\prime} \quad \alpha+\beta>\alpha^{\prime}+\beta$
5. If $\beta>0 \quad \alpha+\beta>\alpha$

That is, the laws for the addition of real numbers are the same as the laws for the addition of rational numbers. Hence the laws for the subtraction of real numbers are the same as the laws for the subtraction of rational numbers.

Multiplication of Irrational Numbers We will define $\alpha \cdot\left(\varphi_{n}\right)$ or $\left(\varphi_{n}\right) \propto \quad$ where α is rational and different from zero and $\left(\varphi_{n}\right)$ is irrational, as the irrational number $\left(\alpha \varphi_{n}\right)$ We will define $0 \cdot\left(\varphi_{n}\right)$ or $\left(\varphi_{n}\right) \cdot 0$ as 0

tt \quad It -6
\checkmark
417 $3180=0$

 nl

We will define $\left(\varphi_{n}\right) \cdot\left(\psi_{n}\right)$ or $\left(\psi_{n}\right) \cdot\left(\varphi_{n}\right)$, where both are irrational, as the irrational number $\left(\varphi_{n} \cdot \psi_{n}\right)$ From this definition and from the laws for the multiplication of rational numbers we get, if a and b are two real numbers,
(1) $\quad a b=b a$
(2) $(a b) c=a(b c)$
(3) $(b+c) a=b a+c a$
(4) $2 f a=a^{\prime} \quad a b=a^{\prime} b$
(5) If $a>a^{\prime}$ and $b>0 \quad a b>a^{\prime} b$

That is the laws for the multiplication of real nombets are the same as the laws for the multiplication of rational numbers. Hence the fundamental laws for the division of real numbers are the same as the fundamental laws for the division of rational numbers

In order to show that the new system is complete to show we now have ${ }^{\text {that }}$ the remaining operation of limits leads us to a number of the system.
Theorem;
A regular sequence of ℓ 'S always has a limit in the new number system.
Hypothesis - $\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon \quad$ whenever $\eta>\mu$

$$
r=1,2,3, \cdots
$$

 121

1×1

TH
III

 Than

To prove; there exists a number A of the system such that having chosen (1) $\varepsilon>0$ we can determine
(2) $\mu>0$ such that

$$
\left|A-Q_{n}\right|<\varepsilon \quad \text { whenever } n>\mu
$$

First; Let ℓ_{n} be a sequence of rational numbers. $\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon$ for all values of $n>V$

$$
r=1,2,3, \cdots
$$

$$
\therefore \varphi_{n}-\varepsilon<\varphi_{n+r}<\varphi_{n}+\varepsilon \quad \text { whenever } n>\downarrow
$$

Choose for M a fixed value, $n>V$ call it m.

$$
\varphi_{m}-\varepsilon<\varphi_{m+r}<\varphi_{m}+\varepsilon
$$

Let r be a variable.
Q_{m+r} is a regular sequence of rational numbers and by definition of irrational numbers it has a limit (φ_{m+r})
Call $\left(\varphi_{m+r}\right), A$ and we will now prove A is the limit of Q_{n}.

$$
\begin{aligned}
& \varphi_{n+r}-\varepsilon<A<\varphi_{m+r}+\varepsilon \quad \text { whenever } m>V \\
\therefore & \left|A-\varphi_{m+r}\right|<\varepsilon(r=1,2,3-\cdots) \quad \operatorname{Let}(m+r)=n \\
& \therefore\left|A-\varphi_{n}\right|<\varepsilon \text { whenever } n>V
\end{aligned}
$$

hence A is the limit of φ_{n}.
\therefore If φ_{n} is a regular sequence of rational nombers it has either a rational limit or by definition of irrational numbers an irrational limit.

 ktiontion

㹉 Lin

> ather
\qquad 2 (an) sa nach

$$
\text { it }-12=a m \quad 20
$$

Tन!

4

\square
5
n-1bM 4 A
 1

We must also prove it has only one limit. Suppose it had another limit $A+B=A^{\prime}$
Then by definition of a limit we can choose (1) $\varepsilon>0$ and find (2) $V^{\prime}>0$ such that $\left|A-\varphi_{n}\right|<\varepsilon$ whenever $n>V^{\prime}$ But if it has another limit choosing the same $\varepsilon>0$ we can find $V^{\prime \prime}>0$ such that

$$
\left|A^{\prime}-\varphi n\right|<\varepsilon \quad \text { whenever } n>V^{\prime \prime}
$$ Now calling the larger of V^{\prime} and $V^{\prime \prime}, \nabla$ we have $\quad\left|A-\varphi_{n}\right|<\varepsilon$

and $\quad\left|A^{\prime}-\varphi_{\eta}\right|<\varepsilon$ simultaneously for all values of $n>\overline{ }$
Now $\left.\left|\left(A-\varphi_{n}\right)-\left(A^{\prime}-\varphi_{n}\right)\right| \leqq \mid A-\varphi_{n}\right)+\left|A^{\prime}-\varphi_{n}\right|$ since the absolute value of a difference is less than, or at most equal to the sum of the absolute values of its terms.

$$
\begin{aligned}
\therefore\left|A-A^{\prime}\right| & \leqq 2 \varepsilon \\
\quad \therefore|B| & \leqq 2 \varepsilon \quad \text { and since there }
\end{aligned}
$$

is no least number, rational or irrational, and the regular sequence of rational Q 's has one and only one limit.

But the proof is not complete for, as we have enlarged our number system, it is possible to imagine a regular
保
sequence of irrational numbers, and, therefore, we must show also that a regular sequence of irrational numbers has a limit in the system.

In order to prove this we need the following;
Lemma;
There always exists a rational number differing from any irrational number by an irrational numbbet by irrational numb less than any positive quantity we may choose.
Let $\left(\varphi_{n}\right)$ be theirational number, call it A Then by definition,

$$
\left|\varphi_{n+r}-\varphi_{n}\right|<\varepsilon \quad \text { whenever } n>\mu
$$

or

$$
\varphi_{n}-\varepsilon<\varphi_{n+r}<\varphi_{n}+\varepsilon
$$

$$
\begin{aligned}
& n>\mu \\
& r=1,2,3, \ldots
\end{aligned}
$$

But by first part of the theorem $\varphi n+r$ has the $\operatorname{limit}\left(\varphi_{n}\right)=A$

$$
\therefore \varphi_{n}-\varepsilon<A<\varphi_{n}+\varepsilon \quad \text { if } n>\mu
$$

or $\quad\left|A-\varphi_{n}\right|<\varepsilon$ whenever $n>\mu$ and we can find a rational number φ_{n}. differing from A by an irrational quantity less than any positive quantity we may choose.

Now let the given regular sequence of irrational numbers be $f_{1}, f_{2}, f_{3}, f_{4}$, etc.
Let $\varepsilon_{1}>\varepsilon_{2}>\varepsilon_{3}>\varepsilon_{4}>\varepsilon_{5}$ etc. bu a set of ε^{\prime} s

 $1=\square 1$

\qquad
-

$4 \mathrm{Han}+\mathrm{n}$

-

$$
\begin{aligned}
& \text { (EX+ , } \\
& \text { 11isibsh of ra- }
\end{aligned}
$$

chosen at pleasure
Form an arbitrary sequence $g_{1}, g_{2}, g_{3}, g_{4}$ etc. such that

$$
\left|g_{n}\right|<\varepsilon_{n} \quad \text { and } \quad f_{n}-g_{n}=\varphi_{n}
$$

where P_{\sim} is a rational number. This last condition is an allowable one by the preceding lemma W111 now show that $\ell_{\text {pis }}$ a regular sequence i.e. having chosen (1) $\delta>0$ we can find a $\mu>0$ such that $\left|U_{n+r}-Q_{n}\right|<\delta$ dohenewer $n>\mu$

$$
r=1,2,3, \ldots \ldots
$$

By hypothesis $\left|f_{n+r}-f_{n}\right|<\varepsilon \quad n \geqslant \mu$

$$
r=1,2,3, \cdots
$$

$$
\begin{aligned}
& \therefore\left|f_{n+r}-f_{n}\right|=\left|\varphi_{n+r}+g_{n+r}-\varphi_{n}-g_{n}\right|<\varepsilon \quad \varepsilon_{n}>\mu \\
& \varepsilon>\left|\left(\varphi_{n+r}-\varphi_{n}\right)+\left(g_{n+r}-g_{n}\right)\right| \\
&>\left|\varphi_{n+r}-\varphi_{n}\right|-\left|g_{n+r}-g_{n}\right|
\end{aligned}
$$

since the absolute value of a sum is greater than or at least equal to the difference of the absolute values of its terms.

$$
\begin{aligned}
& \therefore\left|Q_{n+r}-\varphi_{n}\right| \leq\left|g_{n+r}-g_{n}\right|+\varepsilon \\
& \leq\left|\sigma_{n+r}\right|+\left|g_{n}\right|+\varepsilon \\
&(K)+\varepsilon_{n} \mid+\varepsilon \\
& \text { INOW choose arbitrarily a }<\varepsilon_{n+r}>0
\end{aligned}
$$

(K)

Let

$$
\begin{array}{lcc}
\varepsilon_{n}<\frac{8}{2} & \text { for all values of } n>V^{\prime} \\
\varepsilon_{n+n}<\frac{8}{2} & " \quad " \quad n>V^{\prime}
\end{array}
$$

 fadr mara

$$
\begin{aligned}
& \square-2 \cdot
\end{aligned}
$$

$$
\begin{aligned}
& 1+2
\end{aligned}
$$

Then $\varepsilon_{n}+\varepsilon_{n+r}<\delta$ for $n>-1$
∇ being whichever is the greater V^{\prime} or $V^{\prime \prime}$
Let $\delta=\varepsilon_{n+几}+\varepsilon_{n}+\varepsilon$
This equation fixes the value of \mathcal{E} and by (K) there exists a $\mu>0$ such that

$$
\left|\varphi_{n+r}-\varphi_{n}\right|<\delta \quad \text { of } n>\mu
$$

$$
r=1,2,3,
$$

$\therefore \varphi_{n}$ is a regular sequence and has the $\operatorname{limpt}\left(\varphi_{n}\right) \equiv A$ Will now show that A is the limit of $f n$ or having chosen (1) $\delta>0$ we can find (2) $\mu>0$ such that $\quad\left|A-f_{n}\right|<\delta \quad n>\mu$

$$
\begin{aligned}
&\left|A-\varphi_{n}\right|<\varepsilon \quad n>\lambda \\
&\left|A-f_{n}+g_{n}\right|<\varepsilon \quad n>\lambda \\
&\left|A-f_{n}\right|-\left|g_{n}\right| \leqq\left|A-f_{n}+g_{n}\right|<\varepsilon \quad n>\lambda \\
&\left|A-f_{n}\right|<\varepsilon+\log _{n} \mid \quad \text { if } n>\lambda \\
&<\varepsilon+\varepsilon_{n}<\delta \text { if } n>\lambda
\end{aligned}
$$

$\therefore A$ is the limit of f_{η}.
Q. E. D.
and the irrational number system is complete.

